AMÉLIORER LA QUALITÉ DES VINS BIOLOGIQUES OBTENUS PAR L'UTILISATION DE LA FLORE LEVURIENNE INDIGÈNE Casdar Levainsbio

Conférence SITEVI

« Vinification Bio : Gestion des populations levuriennes indigènes » 24 novembre 2015

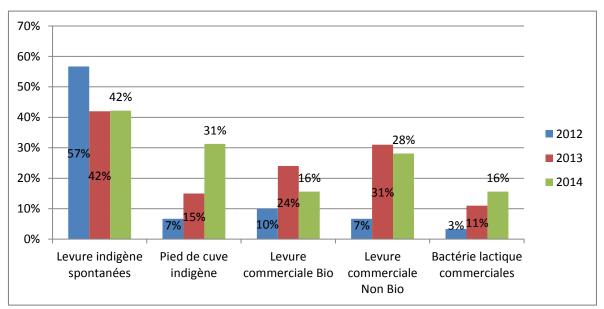
Marie-Charlotte COLOSIO

IFV Pôle Val de Loire-Centre

marie-charlotte.colosio@vignevin.com

Fermentation spontanée

- = flore indigène imposée par la nature
- = consortium d'espèces et de souches variées, d'intérêt technologique incertain
- Performances technologiques très inégales
- Risque de :
 - difficultés fermentaires
 - déviations organoleptiques

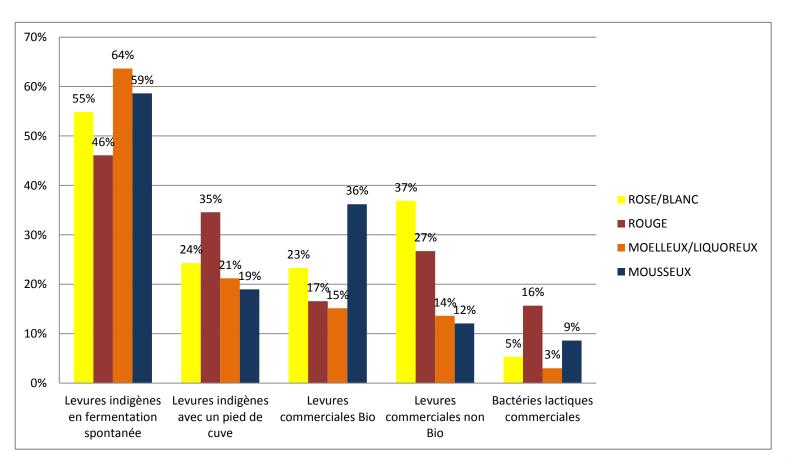


Fermentations spontanées : défauts liés à certaines levures indigènes

Accidents constatés	Levures impliquées
Fermentations incomplètes	Saccharomyces
Production importante de SO ₂	Saccharomyces
Réduction H₂S , mercaptan	Saccharomyces Schizosaccharomyces
Production importante d'acétate d'éthyle, d'acide acétique	Hanseniaspora, Kloeckera Hansenula Metschnikowia
Désacidification importante	Schizosaccharomyces
Odeurs de bergerie, cuir, gouache (phénols volatils)	Dekkera, Brettanomyces
Production importante d'acétaldéhyde	Saccharomyces, Saccharomycodes

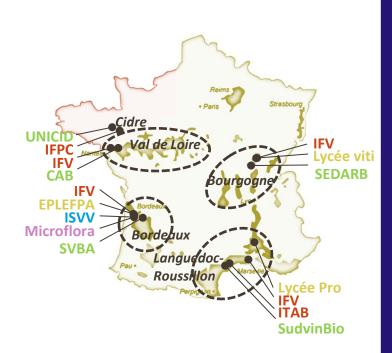
Levurage des moûts

- Grande majorité des opérateurs en conventionnel = utilisation de LSA
- Part grandissante de professionnels = utilisation de pied de cuve de levures indigènes



ITAB, Résultats de l'enquête Nationale sur les pratiques et les besoins œnologiques en Bio, 2014

Levurage des moûts


ITAB, Résultats de l'enquête Nationale sur les pratiques et les besoins œnologiques en Bio, 2014

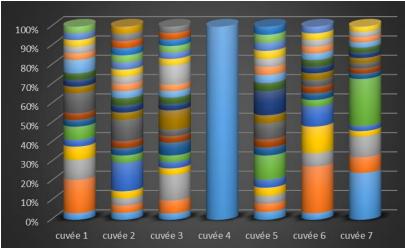
Optimisation de l'utilisation des levures indigènes

- Casdar LevainBio
- IFV Institut Français de la Vigne et du Vin
- **ISVV** Institut des Sciences de la Vigne et du Vin, unité de recherche œnologie (EA 4577), Université Bordeaux Segalen, IPB
- IFPC Institut Français des Productions Cidricoles
- Microflora, ISVV, Villenave d'Ornon
- ITAB Institut Technique de l'Agriculture Biologique
- SudvinBio Association Interprofessionnelle des Vins Biologiques du Languedoc-Roussillon
- **SVBA.** Syndicat des Vignerons Bio d'Aquitaine
- CAB Pays de la Loire. Coordination Agrobiologique des Pays de la Loire
- SEDARB Service d'Écodéveloppement
 Agrobiologique et Rural de Bourgogne

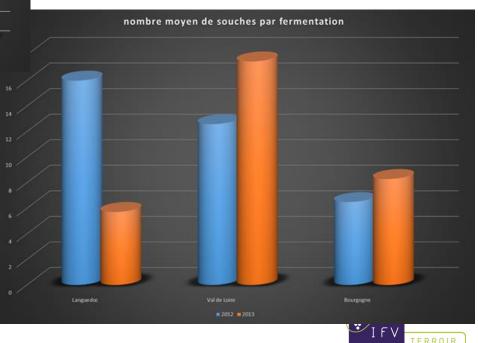
Objectifs du Casdar LevainsBio

- OBJECTIF 1 : Analyser la diversité des levures (et bactéries) indigènes dans les sites de production des différentes régions vitivinicoles (et cidricoles)
- OBJECTIF 2 : Développer des procédés d'utilisation des levures (et bactéries) indigènes

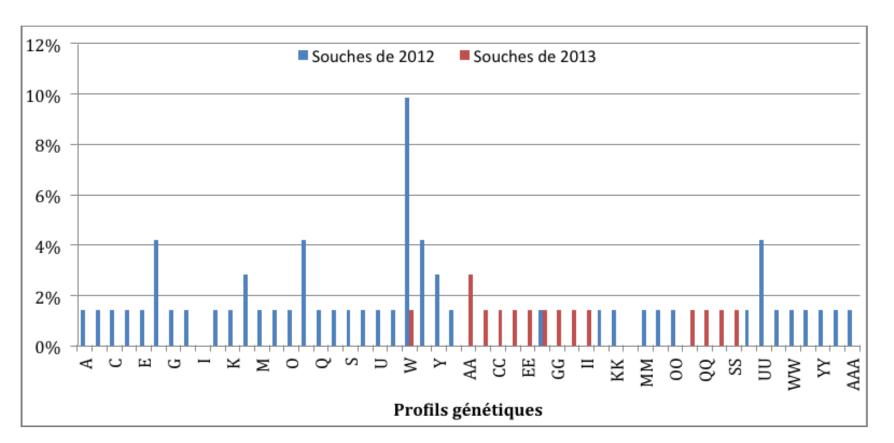
Sélection et production de souches spécifiques



Optimisation des protocoles de pied de cuve

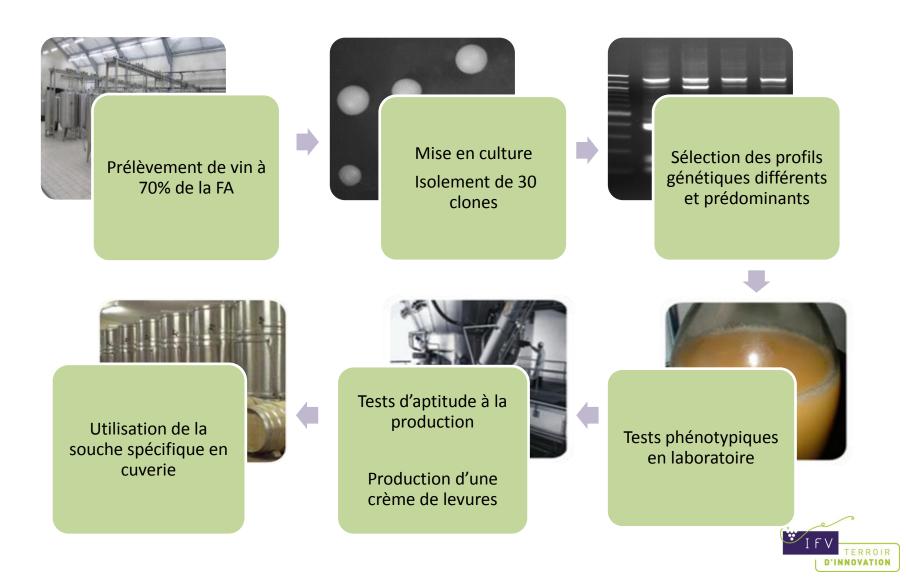

Diversité levurienne

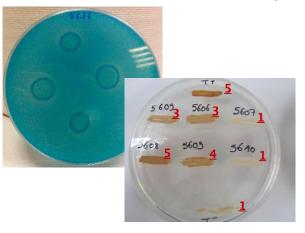
Un grand nombre de souches différentes, avec ou sans dominantes


Coarer, 2013

 Des fluctuations géographiques et annuelles

Diversité levurienne


Fluctuation annuelle des souches sur un domaine



Sélection et production de souches spécifiques

Sélection et production de souches spécifiques

Tests sur milieux gélosés

Phénotype Killer

Production H2S

Microvinif en milieu synthétique

Inoculation à 2,0.10⁶ cells/mL à partir d'une pré-culture dans du milieu au demi Suivi dégagement de CO₂ par pesées quotidiennes / Analyse fin FA

Microvinif en Moût (blanc ou rouge)

Sélection de la souche la plus performante

Sélection et production de souches spécifiques

- Résultats du Casdar LevainsBio
 - 20aine de souches de levures sélectionnées
 - 9 souches produites sous forme de crème
 - Souches sélectionnées : maitrise qualitative et quantitative de la fermentation
- Limite de cette option
 - Pas de souches sélectionnées dans tous les domaines
 - Non viable au niveau économique pour l'ensemble des vignerons
 - Nécessité d'un pied de cuve de la levure sélectionnée (risque de contamination...)

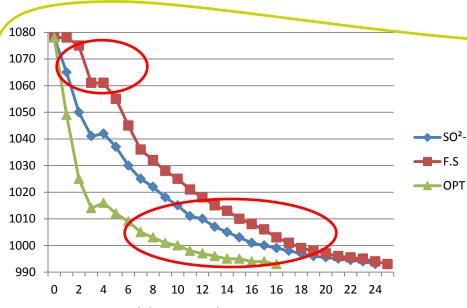
Optimisation des pieds de cuve de levures indigènes

- Etudier l'incidence de différents facteurs de conduite du pied de cuve sur la réussite de la fermentation alcoolique
 - Macération phase solide / liquide
 - Sulfitage
 - Nutrition azotée
 - Oxygénation
 - Température
- Proposer aux professionnels des protocoles de mise en œuvre de cette technique permettant une bonne maitrise des fermentations

Principaux résultats sur la réalisation des pieds de cuves:

- Présence souvent majoritaire de S. cerevisiae dans PDC à 75% FA avant utilisation
- Effet sensible du sulfitage : Population S.cerevisiae plus importante dans PDC SO₂ +
- Effet de la température: T°C + élevée = vitesse de fermentation PDC plus rapide, favorise développement *S. cerevisiae*
- Effet de l'aération peu marqué dans les conditions de nos essais
- Déroulement des fermentations des PDC plutôt satisfaisant (sauf quelques cas de phase de latence > 7 jours)
- Profil analytique des PDC avant utilisation satisfaisant et peu de différences entre modalités : pas de formation AV importante

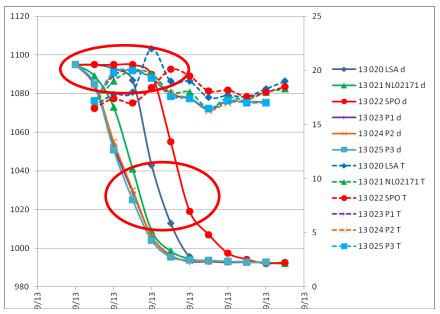
Principaux résultats sur le déroulement et la qualité des FA des cuves ensemencées.


Sur vin rouge :

- Déroulement satisfaisant de la FA, pour modalités PDC par rapport à la modalité fermentation spontanée : départ rapide et fermentations complètes (sucres < 2g/L)
- FA des modalités PDC satisfaisante par rapport à modalité LSA (cinétiques et AV)
- Déroulement de FA homogène entre les modalités PDC au sein d'un même essai et peu de différences analytiques significatives sur vins fin FA et qualités sensorielle préservées

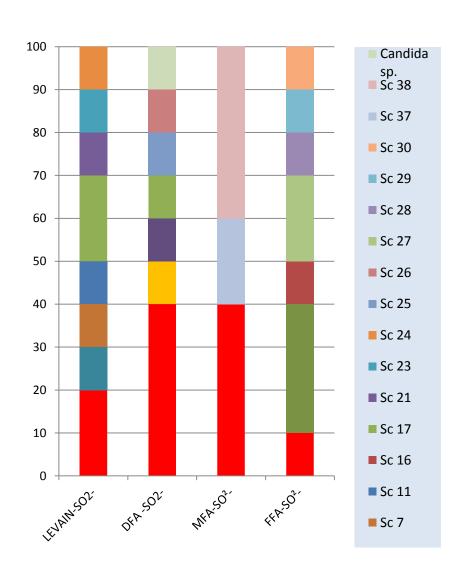
• Sur vin blanc:

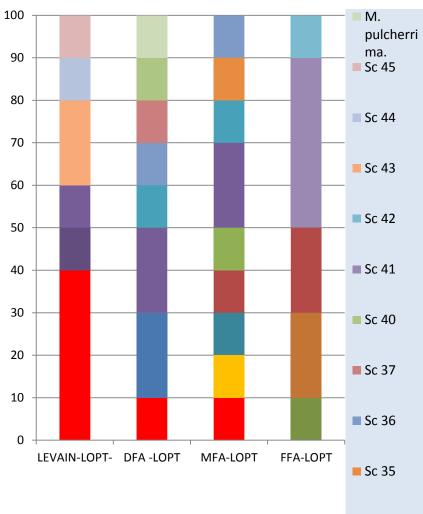
- Résultats plus mitigés. Un même pied de cuve peut permettre une FA complète sur une cuve et une FA incomplète sur une autre cuve.
- Protocole à affiner



Cinétiques de fermentation relatives aux modes d'ensemencement

Essai 3 vin blanc sauvignon


1090 1080 1070 1060 1050 1020 1010 1000 990 T+0 T+5 T+10 T+15 T+20 T+25 T+41 Durée de FA (en jours)


──modalité 1: L. indigènes ──modalité 2 : LSA ──modalité 3: 18-24°C O2- ──modalité 4: 18-24°C O2+

Essai 2 vin rosé syrah

Flore du <u>levain sans SO₂</u> et flore de la cuve associée (Site 1, Melon 2011)

Flore du <u>levain optimisé</u> et flore de la cuve associée (Site 1, Melon 2011)

Contraintes technologiques comparées entre LSA et pied de cuve

Stade d'élaboration	Utilisation des LSA	Utilisation d'un levain indigène
Réalisation du levain	-	Récolte anticipée (6 à 8 jours) et surveillance de la croissance
Pureté de l'inoculum	Garantie et reproductible	Moût de raisin chargé de manière variable en micro- organismes : implantation d'un levain possible mais non garantie.
Phase de latence	Liée à la souche utilisée et aux facteurs du milieu	Quasiment absente si les conditions de milieu (sucres, SO_2 , température) du levain et du moût à ensemencer sont proches
Incorporation des	Mise en œuvre aisée,	Respect des contraintes plus délicat : utilisation de
souches	volumes faibles à utiliser ne nécessitant pas de pompe	pompes, de tuyaux Temps de travail plus important
Reproductibilité	Facilité de constance dans la maîtrise ; qualité des LSA constante	Niveau de population variable et dépendant de l'état physiologique des souches. Difficulté d'obtenir un inoculum aux caractéristiques constantes.
Hygiène	Sources de contamination faibles (bac de réhydratation).	Contrainte la plus lourde : plan d'hygiène rigoureux indispensable. Moyens à mettre en œuvre quasiment doublés pour assurer au minimum la pureté des levains.

Contraintes technologiques comparées entre LSA et pied de cuve

Stade d'élaboration	Utilisation des LSA	Utilisation d'un levain indigène
Niveau de	Populations apportées	Apport minimum : 3% du volume de la cuve en levain
population apportée	régulières (1 million de cellules/ml)	pour assurer un départ en fermentation du moût.
Respect de la	Faibles volumes de LSA :	Volume de 3% apporté : pas forcément le même niveau
matière première	respect de l'effort de sélection de la vendange	qualitatif que la matière à ensemencer.
Contraintes de main	Coût facilement mesurable;	Coût réel difficilement calculable : coûts en main
d'œuvre	opération nécessitant peu de	d'œuvre et en matériel quasiment doublées, et
	main d'œuvre et de matériel	inoculation du levain beaucoup plus contraignante.
	de cave	
Qualité des vins	Régularité de la qualité des	Incertitude de la qualité des levains susceptible de
obtenus	produits obtenus (sauf	conduire à des problèmes d'achèvement de la
	défauts liés à une mauvaise	fermentation, avec possible perte de qualité et de
	mise en fermentation)	valorisation (label) pour le produit.

Merci de votre attention!