

« Structure et vie du sol » chez JB Bournier

RENCONTRE TECHNIQUE, MERCREDI 21 JUIN 2023

PRÉSENTATION DE BIO ARIEGE GARONNE

BIO ARIÈGE-GARONNE

Le groupement des agriculteurs BIO d'Ariège et de Haute-Garonne

12 administrateurs 11 salariées 427 adhérents (2022) Issue de la fusion en 2021 du CIVAM Bio 09 et d'ERABLES 31

Appartenant à :

- ► Réseau Bio Occitanie et FNAB (Fédération Nationale d'Agriculture Biologique)
- ► Réseau CIVAM

Adhérente à :

► Interbio Occitanie (Interprofession Bio)

NOS MISSIONS

4 AXES D'ACTION:

Représenter les agriculteurs bio en 09 et 31

Dans les instances agricoles, face aux élus du territoire, au niveau régional (à travers Bio Occitanie) ou au national (réseau FNAB ou CIVAM)

Accompagner les producteurs et futurs producteurs

Accompagnement à la conversion, animation de groupes pour favoriser l'échange de savoir-faire, veille réglementaire, organisation de formations, diffusion d'infos (Fil Bio et Feuille bio) ...

Projets alimentaires de territoire

Accompagnement des collectivités locales dans leurs projets agricoles et alimentaires, accompagnement des établissements de restauration collective pour introduire des produits bio locaux aux menus, ...

Communiquer et informer sur l'agriculture biologique

Organisation d'évènements grand public, animations pédagogiques, animation de défis Foyers à Alimentation Positive, Publications techniques et grand public sur la bio

NOS MISSIONS

DIVISÉES EN PÔLES

Bio Ariège-Garonne

Le groupement des agriculteurs BIO d'Ariège et de Haute-Garonne

POLE TECHNIQUE ET PRODUCTION

POLE DEVELOPPEMENT, CONVERSION, INSTALLATION, TRANSMISSION

POLE FILIERES
AGRICOLES

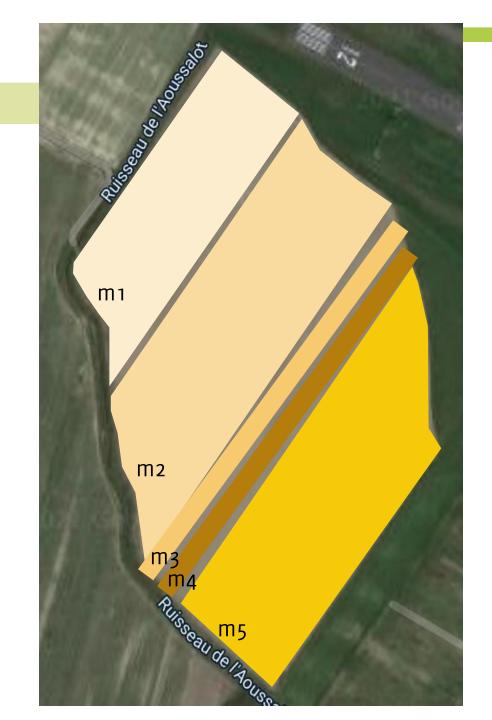
POLE TERRITOIRES

POLE COMMUNICATION ET SENSIBILISATION

POLE STRATÉGIE ET GESTION

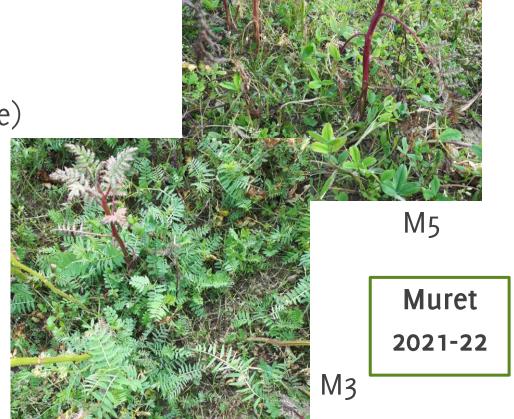
SYNTHESE DU TRAVAIL DU GIEE 2020-2023

Principe: identifier le couvert le plus adapté à chaque ferme et son/ses objectif(s)


- Travaux principaux:
 - Recherche d'un **mélange** avant tournesol ou soja **SANS féverole**
 - → éviter risque maladie
 - → Semis précoce (avant 15/09)
 - Recherche d'un **mélange** avant tournesol ou soja **AVEC féverole**
 - → Semis plus tardif
 - → Objectif: capter de l'azote
 - Essai de semis direct de soja dans le seigle

ESSAI SANS FEVEROLE

Exemple de dispositif:


	Moutarde blanche	Phacélie	Féverole	Vesce	Trèfle alexandrie
M1	Architect	Natra	Axel		
M2	Architect	Natra		Gravesa (v. commune hiver)	
M3	Architect	Natra		Goliath (v. velue)	
M4	Architect	Natra			Tigri
M5	Architect	Natra			Akenaton

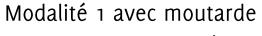
Muret - 2021-22

SYNTHESE DES RESULTATS

- Levée homogène
- Bonne couverture du sol pendant l'hiver
- Vesce velue couvre mieux le sol (que commune)
- Variété Akenaton de trèfle alex : biomasse ++
- Mauvaise expression de la phacélie

Meilleures modalités :

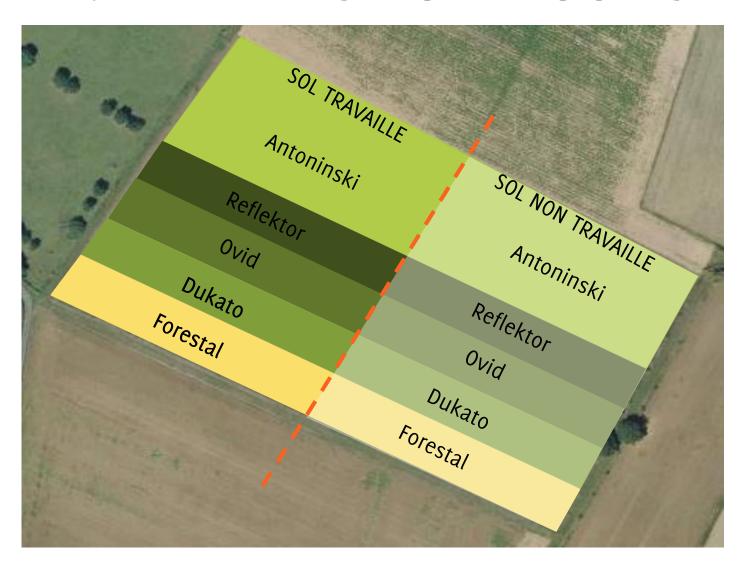
M3: BASE MOUTARDE+PHACÉLIE + VESCE VELUE (GOLIATH)


M5: BASE MOUTARDE+PHACÉLIE + TREFLE ALEX (AKENATON)

ESSAI AVEC FEVEROLE

Obj: fertilité

	M-P-fev-V	P-fev-V	
Féverole (Axel)	100	100	
Moutarde bl. (Venice)	2		
Phacélie (Natra)	5	7	
Vesce c. (Gravesa)	40	40	
Précédent	T. violet	Sarrasin	
Date implantation	07/10/2022	07/10/2022	
Date destruction	17/04/2023	18/04/2023	
Méthode implantation	épandage + travail		
Méthode destruction	broyage	DDI	
Culture suivante	tournesol	tournesol	
Date Semis culture suivante	28/05/2023	28/05/2023	
Salissement Ray Grass	XX		
MS (t/ha)	8,6	6,07	
Azote piégé (kg/ha)	225	155	
Azote restitué (kg/ha)	69	63	
Stockage carbone (t/ha)	1,3	0,8	
Evolution MO (t/ha)	2,2	1,4	



Modalité 2 sans moutarde

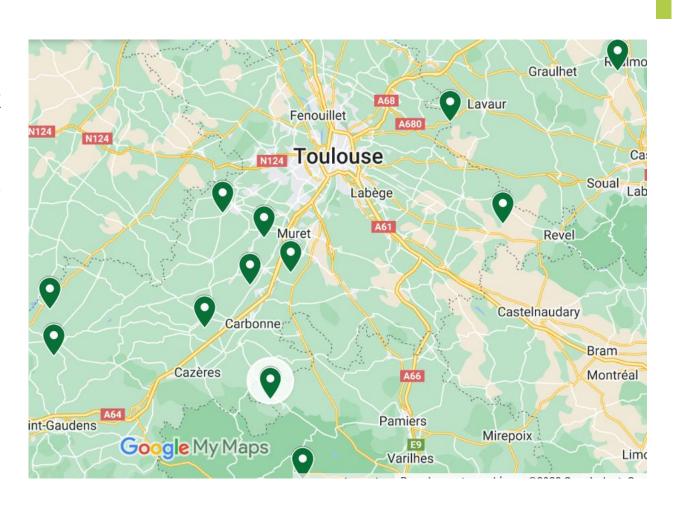
ESSAI VARIÉTAL SEIGLE POUR SD SOJA

Saint Genest de Contest 2021-22

OBSERVATIONS GLOBALES AU 18 MAI

Ovid: seule variété qui se détache. Fait le travail en biomasse <u>et</u> gestion des adventices. A voir comment se comportera une fois couchée.

	Modalité sol travaillé		
Au 29/04/2022	MS (t/ha)	N piég. (Kg/ha)	
Forestal	1,3	45	
Dukato	1,6	60	
Ovid	2,8	75	
Reflektor	1,8	60	
Antoninski	2	55	


GIEE SOLS EN TRANSITION 2023-26

OBJECTIF GLOBAL:

Identifier des mélanges de couverts végétaux et les itinéraires techniques associés, les plus adaptés au contexte et objectifs de l'agriculteur tout en optimisant les services écosystémiques rendus.

AXES DE TRAVAIL

- 1) Améliorer la fertilité et la vie des sols (MO, azote, etc.)
- 2) Réduire le travail du sol
- 3) Maîtriser les coûts des couverts végétaux

PRÉSENTATION DE LA FERME DE JEAN-BERNARD BOURNIER

PRÉSENTATION DE LA FERME

GAEC DE CARGAUT

USAGE DES TERRES

55ha prairies permanentes et STH 30 ha prairies temporaires 30 ha luzernes 125ha céréales et oléoprotéagineux

PRÉSENTATION DE LA FERME

TROUPEAU DE GASCONNE

45 vaches ; 15 génisses 2 ans; 15 génisses 1 an Engraissement; vente de reproducteurs; vente foin

ASSOLEMENT

Blé+ fèverole
Orge+ fèverole
Avoine +vesce (trèfle +RGI)
Tournesol +tréfle Alexandrie
Mais +soja
Epeautre (grande et petite)
Sarrasin (Mono)
Fenugrec (culture et couvert)

Toutes les céréales sont cultivées en association

DÉMARCHE DE LA FERME

Le passage en bio il s'est fait classiquement :

Faire comme en conventionnel mais pour faire du bio

Travail du sol

(déchaumage chisel labour)

Plusieurs passages

(faire lever le mauvaises herbes)

herse étrille bineuse

l' azote

(achat d'engrais bio , azopril 30 t/ha fumier sur prairies et maïs)

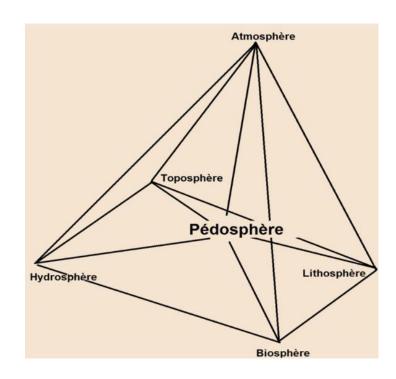
DES RESULTATS
TRES VARIABLES

MAUVAISES
HERBES
TOUJOURS
PRESENTES

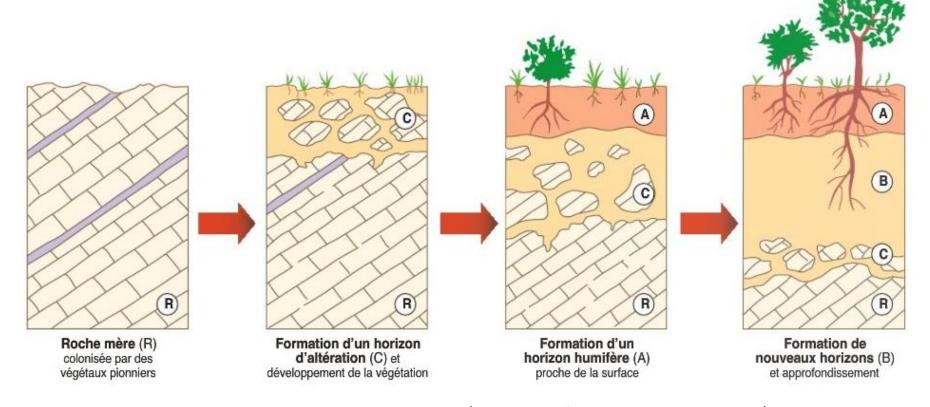
EVOLUTION DES PRATIQUES

2021: Couvert végétaux, apport de MO (10t/ha 80 ha/an), travail cultural simplifié, non labour

2022: TCO, enrobage, semis TCS, enrobage, semis TCS, cultures associées, compost

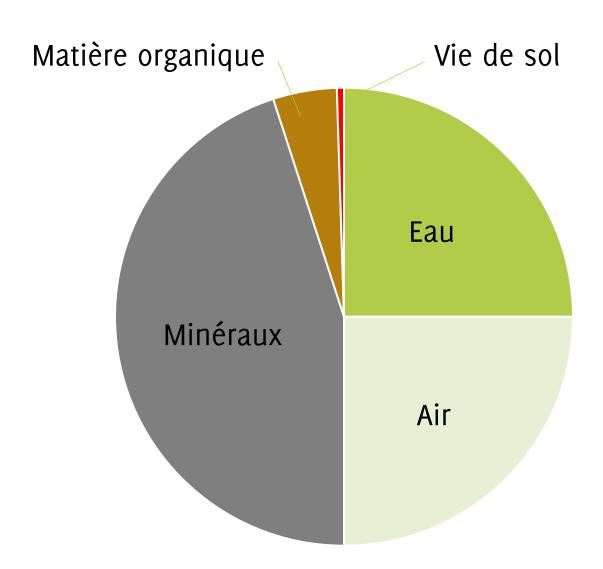

A VENIR: EM, Agroforesterie, BRF, Semis direct

SOL ET VIE DU SOL L'AGROÉCOLOGIE


QU'EST-CE QU'UN SOL?

Le mot "Sol" vient du latin "solum" qui signifie support, fondement, base, fond.

Le sol se situe à l'interface de l'atmosphère, de l'hydrosphère (les eaux continentales, voire marines), de la biosphère (végétaux, microorganismes, animaux, dont l'homme : anthroposphère), de la lithosphère (les formations géologiques) et de la troposphères (relief). Source AFES.



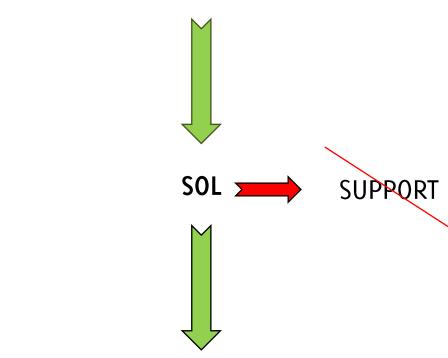
COMMENT SE FORME UN SOL?

Un sol se forme sous l'action du climat (T°C, précipitations, gel) et des organismes vivants (végétaux, microorganismes, champignons) qui altèrent et pénètrent.

LES COMPOSANTES D'UN SOL

L'AGRO-ÉCOLOGIE

Plusieurs définitions...

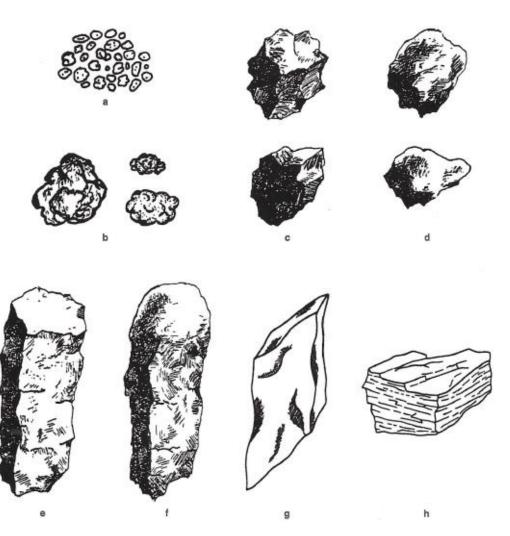

L'agroécologie est l'ensemble des pratiques agricoles qui met en relation la science de l'agriculture, l'Agronomie, et l'Ecologie.

Elle vise à prendre en considération les écosystèmes dans la production.

Apparition du concept : 1928, avec l'Agronome américain BENSIN.

- ⇒ il est possible de produire mieux tout en étant respectueux des **écosystèmes** et de la **biodiversité**.
- ⇒ Reconstituer des écosystèmes, les préserver, et les utiliser pour produire.

Produire autant, voire plus, mais MIEUX


Ecosystème, avec sa Vie, pour nous aider à produire

STRUCTURE DES SOLS

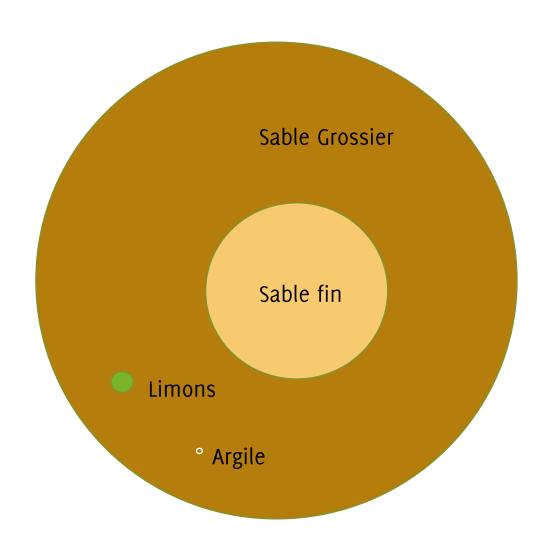
FERTILITÉ PHYSIQUE

DIFFÉRENTES STRUCTURES

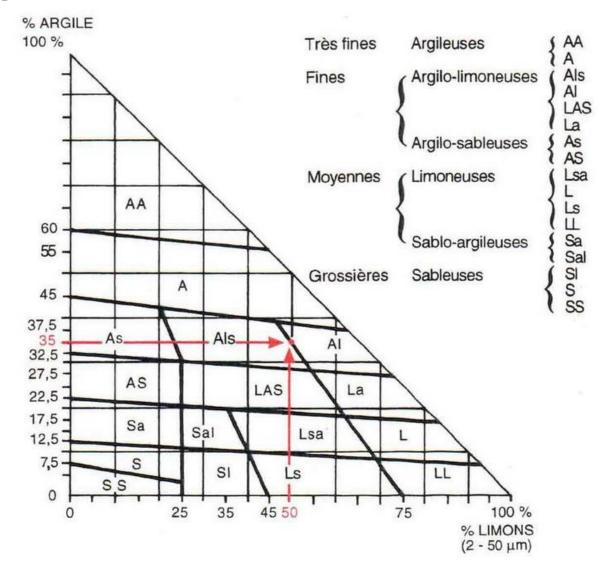
- a. Structure grenue.
- Structure grumeleuse.
- c. Structure polyédrique anguleuse.
- d. Structure polyédrique subanguleuse (dite aussi « polyédrique émoussée »).
- e. Structure prismatique.
- f. Structure columnaire.
- g. Structure rhomboédrique, dite aussi « sphénoïde » et « en plaquettes obliques
- h. Structure lamellaire.

TAILLE DES PARTICULES

Eléments grossiers > 2 mm

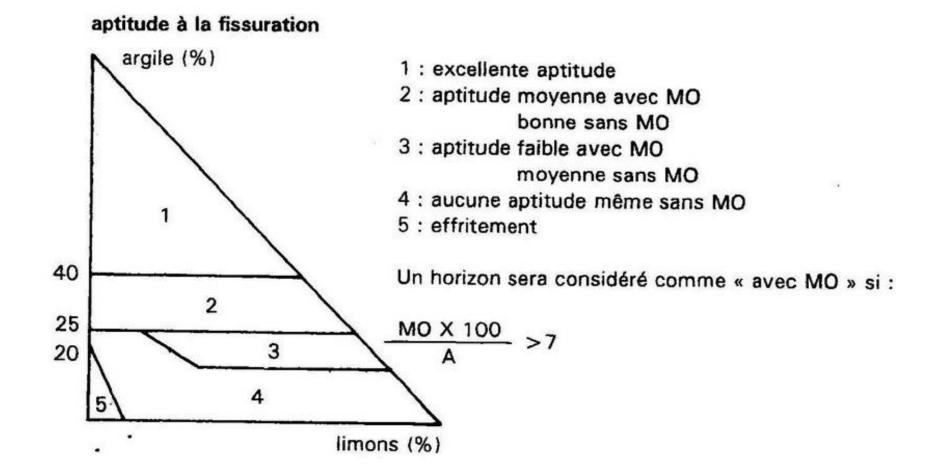

Sables grossiers : 0,2-2 mm

Sables fins: 50-200 µm

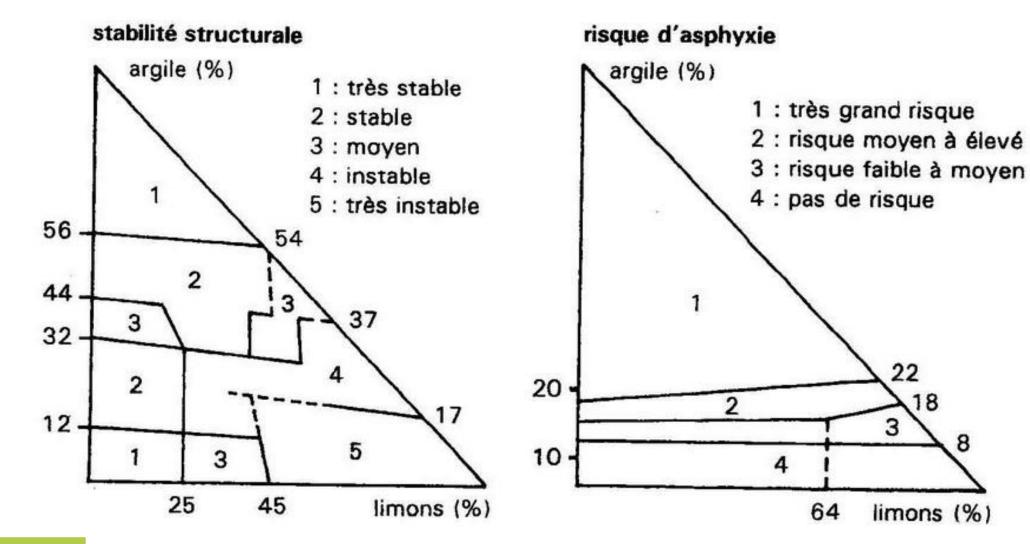

Limons grossiers : 20-50 μm

Limons fins : 2-20 µm

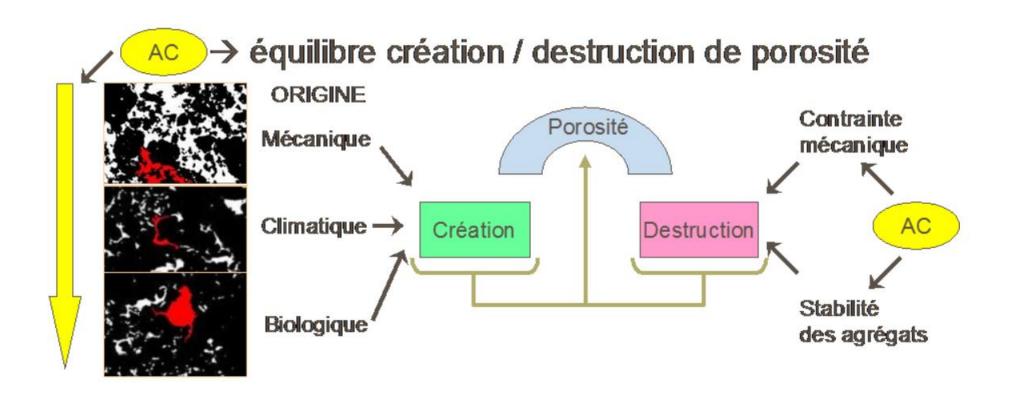
Argiles < 2 µm



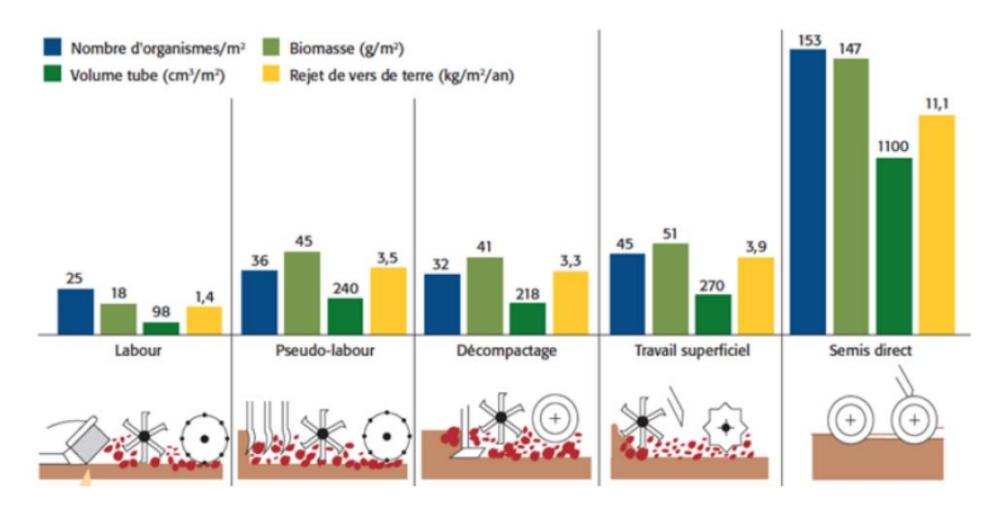
TEXTURE



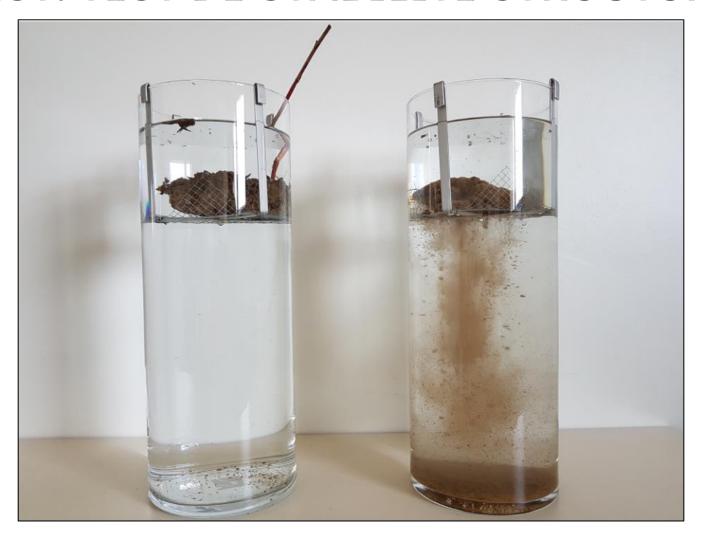
argile lourde
argile ou argileux
argile limono-sableuse
argile limoneuse
limon argilo-sableux
limon argileux
argile sableuse
argilo-sableux
limon sablo-argileux
limon sablo-argileux
très limoneux ou limon pur
sable argilo-limoneux
sable limoneux
sableux
très sableux ou sable


INFLUENCE DE LA TEXTURE

INFLUENCE DE LA TEXTURE



GESTION DE LA STRUCTURE



Argile : effet gel, eau, sécheresse Source : SupAgro

GESTION DE LA STRUCTURE

SLAKE TEST: TEST DE STABILITÉ STRUCTURALE

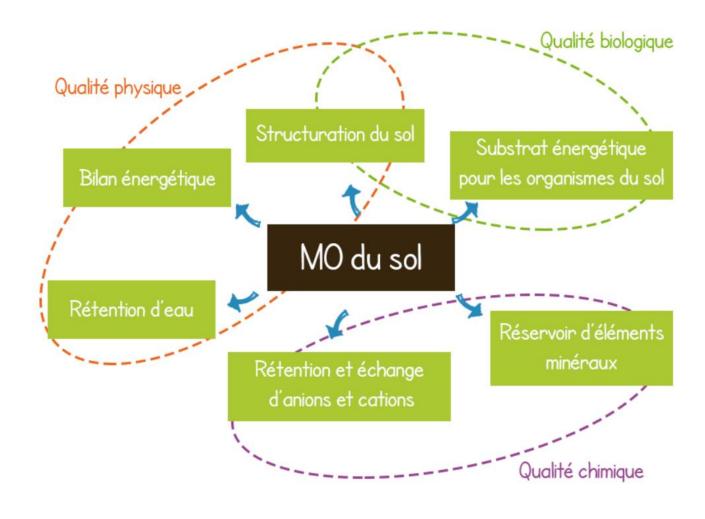
Source Ecophyto

EXEMPLE DE RAISONNEMENT

		Etat interne des mottes		
		Poreux (Gamma Γ)	Fissuré (Phy Φ, lamellaire P)	Tassé (Delta Δ)
Etat général du bloc prélevé	Ouvert (terre fine)	Non travail possible	Non travail possible	Peu probable
	Bloc (mottes décimétrique)	Non travail possible	Sur 10-20 cm uniquement Non travail possible	Sur 0-10 cm uniquement Travail du sol préférable sur 0-10 cm
			Sur 0-10 cm Travail du sol préférable sur 0-10 cm	Sur 0-20 cm ou 10-20 cm Travail du sol préférable sur 0-20 cm
	Continu (monobloc)	Situations rares de sol non travaillé depuis de nombreuses années fortement rappuyés mais non tassés	Sur 0-10 cm uniquement Travail du sol préférable sur 0-10 cm	Sur 0-10 cm uniquement Travail du sol nécessaire sur 0-10 cm
			Sur 0-20 cm ou 10-20 cm Travail du sol préférable sur 0-20 cm	Sur 0-20 cm ou 10-20 cm Travail du sol nécessaire sur 0-20 cm

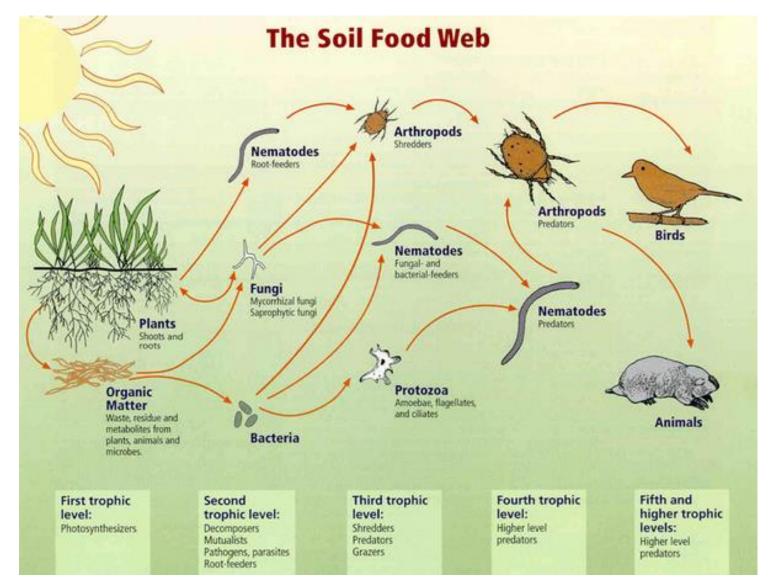
Source Terres Inovia

LES PILIERS DE LA FERTILITÉ DU SOL


CHIMIQUE Minéraux, pH, CEC

Fertilité du sol et nutrition de la plante

BIOLOGIQUE

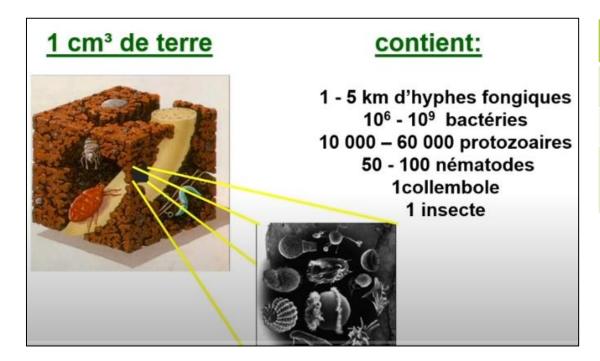

Matière organique, Micro-organismes PHYSIQUE Structure, texture, porosité

FOCUS SUR LA MATIERE ORGANIQUE

QU'EST-CE QUE LA VIE DU SOL ? QUE FAIT-ELLE ?

VIE DU SOL

Microfaune Micro-organismes **Bactéries** Nématodes **Protozoaires** Micro-algues Champignons


Archées

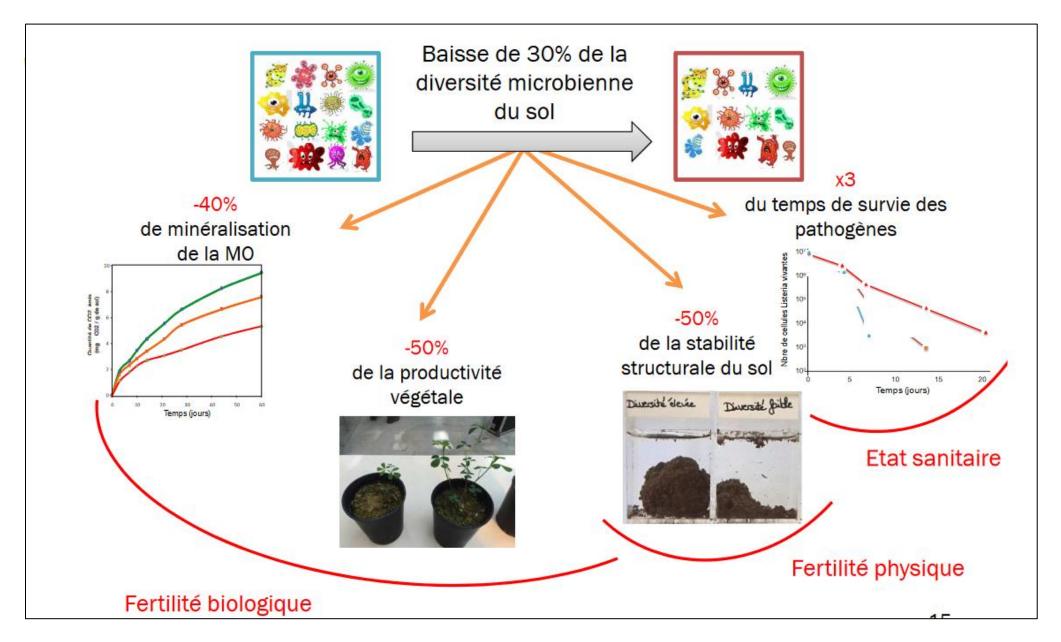
Mesofaune

VIE DU SOL

	Nombre par m²	Kg/Ha
Bactéries	10 ¹¹ à 10 ¹⁴	1500
Champignons	Non déterminé	3500
Algues dont Cyanobactéries	10 ⁸ à 10 ⁹	150

1 cm³ de terre : 106 à 109 bactéries et 5 km de filaments mycéliens !

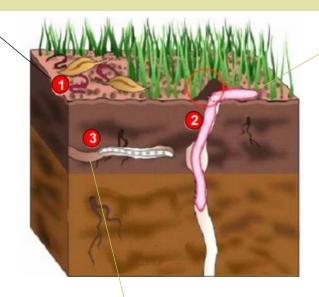
Sources : CNRS/Sagasciences et Revue Bio



QUE FAIT LA VIE DU SOL?

- Dégradation / transformation de la matière organique : formation d'humus et minéralisation
- Fixation du Carbone
- Solubilisation des éléments minéraux
- Fixation de l'azote atmosphérique,
- Sécrétion de substances de croissance et de défense pour les plantes
- Amélioration de la structure du sol (galeries, brassage, filaments, agrégats)

1 Les épigés


Taille: petite (1-5 cm)
Couleur: rouge sombre

Lisenia eiseni Coule

Vivent en surface
 dans les amas organiques
 (compost, fumier, ...)

Creusent peu ou pas de galeries

Régime alimentaire : **saprophages**Ils se nourrissent de la matière
organique morte (feuille, écorce, ...)

2 Les anéciques

Taille: grande (10 - 110 cm)

Couleur: rouge, gris clair, brun

(avec un gradient de la tête à la queue)

· Vivent dans l'ensemble du sol

 Creusent des galeries permanentes verticales

 Rejettent des déjections à la surface du sol

Turricule

Régime alimentaire : **sapro-géophages**Ils viennent la nuit chercher leur nourriture en surface (feuilles, herbes mortes,...) et l'enfouissent dans leurs galeries

arectodea giardi

Les endogés

Taille: moyenne à grande (1 - 20 cm)

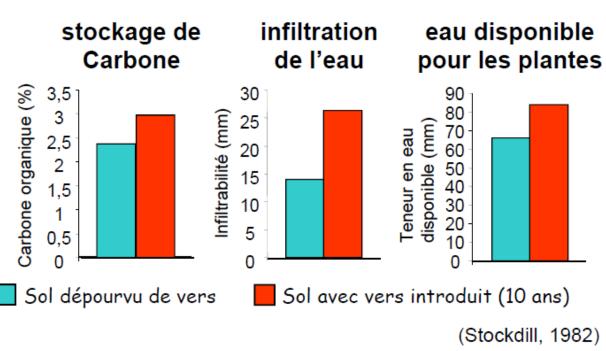
Couleur: faiblement pigmentée (rose à gris-clair)

• Vivent dans le sol et remontent rarement à la surface

• Creusent des galeries temporaires horizontales

Régime alimentaire : géophages

Ils mangent de la terre qui contient de la matière organique plus ou moins dégradée (racines mortes, humus, ...)


Source: OPVT

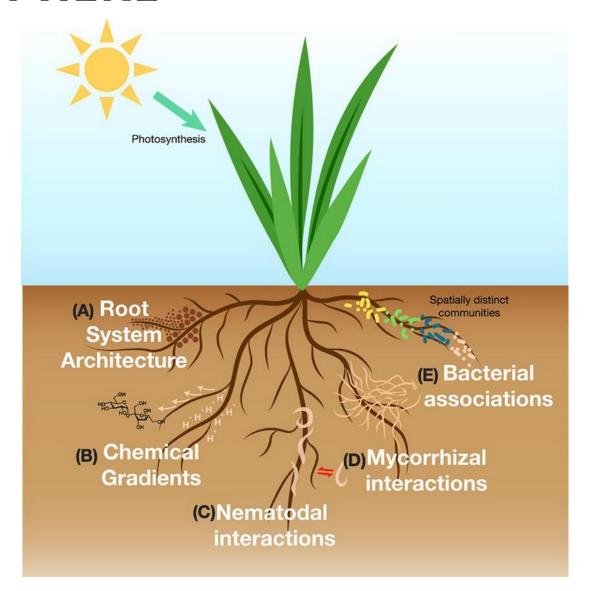
LES VERS DE TERRE

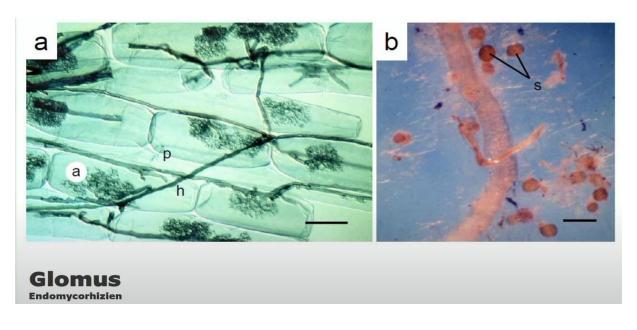
Les vers de terre contribuent:

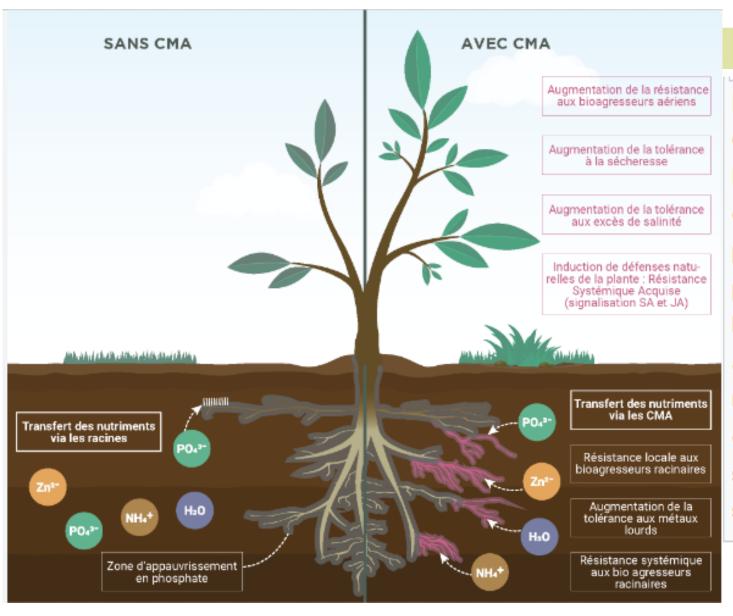
- à la dynamique des matières organiques (M0)
- à la dynamique des nutriments
- à la dynamique de la structure du sol

Impact des lombriciens sur certaines fonctions du sol

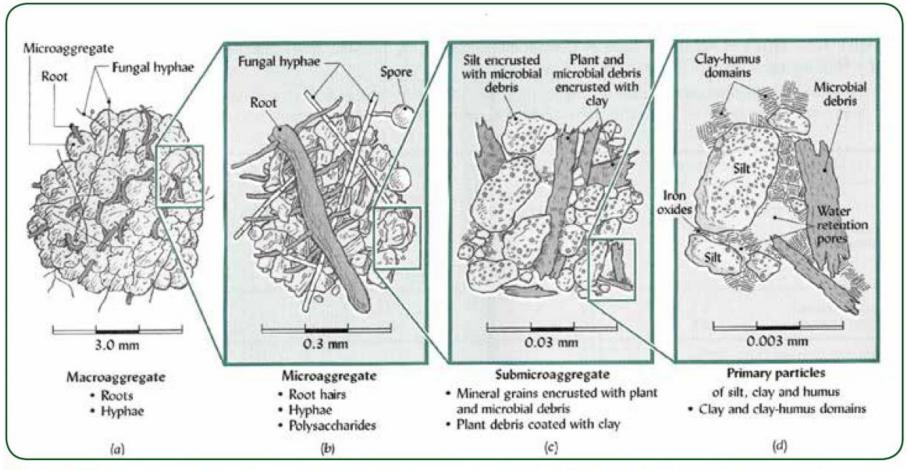
LES COLLEMBOLES


- Hexapodes : Arthropodes possédant trois paires de pattes
- Plus de 8000 espèces répertoriées dans le monde
- Jusqu'à 300 000 individus / m² dans les sols les plus favorables
- Décomposition de la matière organique
- Régulation des populations microbiennes
- Leurs fèces sont très utiles à certaines bactéries (ex. fixatrices d'Azote)
- + de Collemboles en général en Bio, mais n'aiment pas l'accumulation de Cuivre.




LA RHIZOSPHERE

LES MICORHIZES



Effets positifs de la colonisation par un Champignon mycorrhizien arbusculaire (CMA)

Le réseau d'hyphes des CMA s'étend au-delà de la zone d'appauvrissement (gris), accédant à un plus grand volume de sol pour l'absorption de phosphate. Une zone d'appauvrissement en phosphate mycorhizien finira également par se former autour des hyphes MA (violet). D'autres nutriments ayant une meilleure assimilation dans les racines colonisées par un CMA sont notamment l'azote (ammonium), le zinc et le cuivre. Les avantages de la colonisation comprennent des tolérances à de nombreux stress abiotiques et biotiques grâce à l'induction d'une résistance systémique acquise.

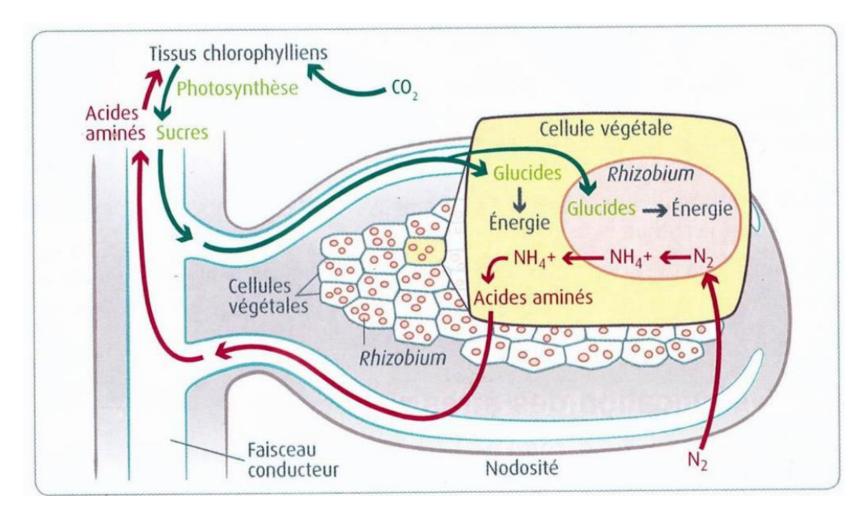
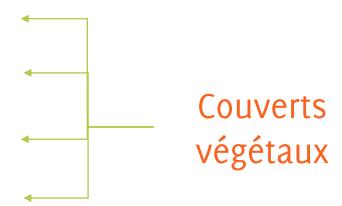
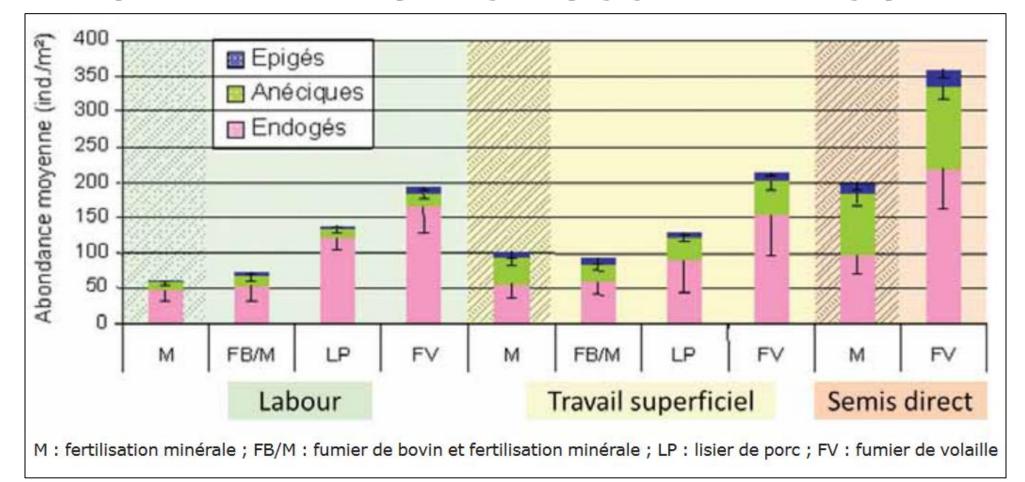

AMÉLIORATION DE LA STRUCTURE

FIGURE 1.11. Aggregate size and composition. An active microbial population will build and stabilize soil through production and interaction with adhesive by products. Each step (a–d) demonstrates the bonding agents and aggregation of soil as size decreases. Adapted from *The Nature and Properties of Soils*, 12th ed., Brady and Weil (1999) Fig. 4.26 from p 150¹.

BACTÉRIES FIXATRICES D'AZOTE


RHIZOBIUM


COMMENT FAVORISER LA VIE DU SOL?

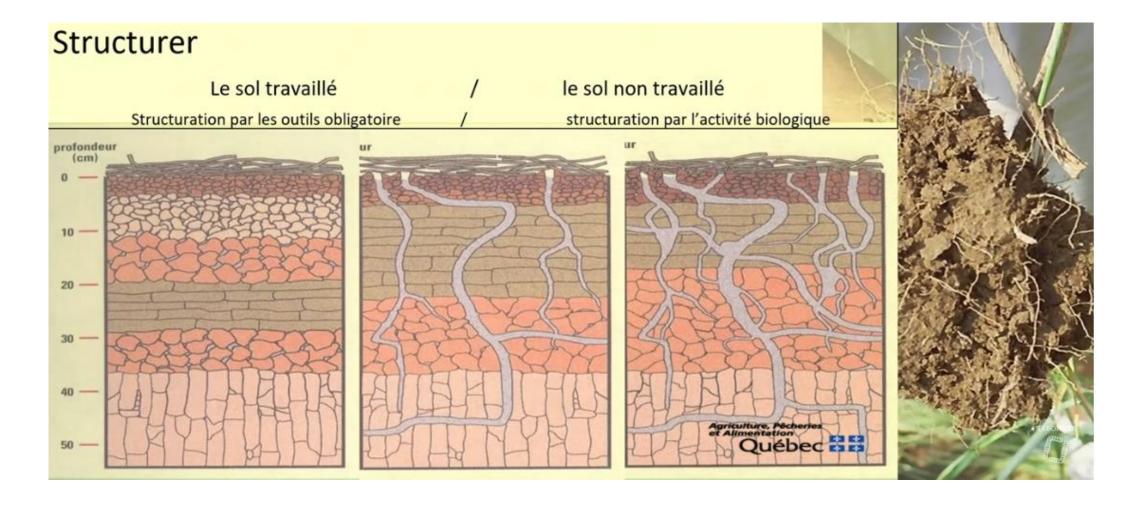
COMMENT FAVORISER LA VIE DU SOL?

- Perturber le sol le moins possible
- Garder les sols couverts, avec des plantes variées
- Assurer une bonne structure de sol (porosité)
- Nourrir les micro-organismes
- Tisanes de compost

PERTURBER LE MOINS POSSIBLE LE SOL

La fertilisation organique peut compenser l'effet du travail du sol

Source: CRAB

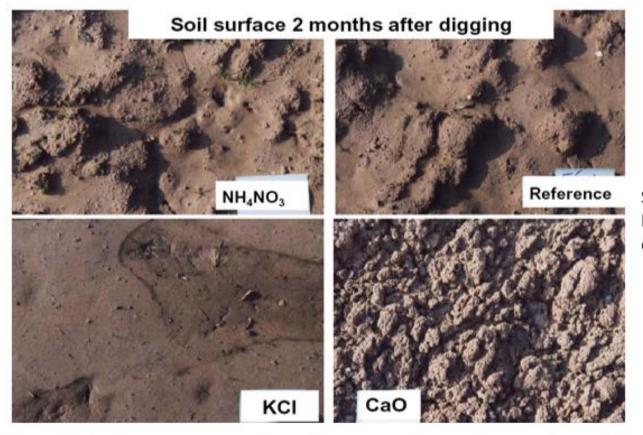

PERTURBER LE MOINS POSSIBLE LE SOL

Légumineuses et SD : une fixation symbiotique plus performante

	N fixé (%)		N fixé (kg/ha)	
	Labour	SD	Labour	SD
Pois chiche	34	28	32	27
Soja	73	88	180	232
Soja	73	88	91	156
Pois chiche (1994)	31	40	9	11
Pois chiche (1995)	12	17	4	5
Pois	48	79	ND	ND
Lentille	62	72	ND	ND
Soja (cultivar S12)	87	91	33	47
Soja (cultivar S15)	86	88	39	44

Encore un exemple où l'intérêt des légumineuses est d'autant plus prononcé en SD (ou travail minimum du sol). Dans ces conditions de moindre perturbation de la structure, la symbiose rhizobienne s'exprime beaucoup mieux et l'azote fixé est plus élevé qu'en situation de travail conventionnel. Les légumineuses font partie intégrante des rotations dans les grands pays du SD et l'ont toujours été: soja en Amérique (Nord et Sud) et lupin en Australie. De ce fait, les agriculteurs de ces pays n'ont pas connu de problèmes de faim d'azote liée au non-travail du sol. Ils ont ainsi pu mettre en œuvre plus facilement ces techniques.

PERTURBER LE MOINS POSSIBLE LE SOL



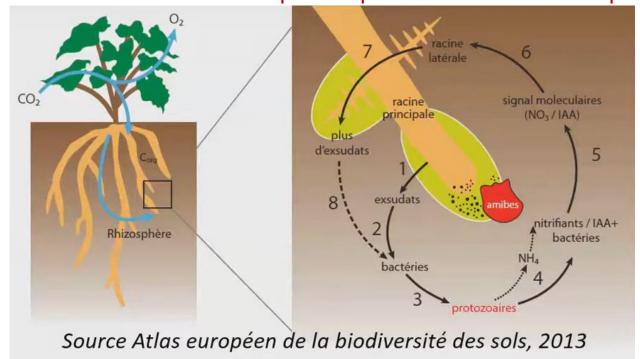
ASSURER UNE BONNE STRUCTURE DE SOL

Effets généraux sur le sol des engrais verts, selon les familles botaniques

	Effet sur la structure en surface	Effet sur la structure en profondeur	Enrichissement du sol en azote après destruction	Effet dépressif (nettoyant sur les adventices)
Graminées	+++		-	-
Légumineuses		+++	+++	++
Crucifères	-	+++	++	++

ASSURER UNE BONNE STRUCTURE DE SOL

Source : Essai INRA des 42 parcelles


L'arrivée des protons dans le système chasse le calcium et diminue la stabilité structurale

NOURRIR LES MICROORGANISMES

« Rien ne se perd, rien ne se crée… »

Les EXSUDATS racinaires : jusqu'à 20% du produit de la photosynthèse Sucres, acides aminés, vitamines.

Activité microbienne 20 x plus importante dans la rhizosphère.

Il faut optimiser la PHOTOSYNTHESE (N, Mg, Mn, Fe...), la croissance, la quantité de racines.

NOURRIR LA VIE DU SOL

Vie microbienne suivant le pH eau

pH _{eau}	Nombre de bactéries cellulolytiques (par g de terre)	
5,2	0	
6	250 000	
6,5	25 000 000	
7	25 000 000	
8,2	250 000	

pH _{eau}	Nombre de bactéries nitrificatrices (par g de terre)
6,2	1 000
6,4	3 500
6,6	6 000
6 ö	25 000
7	55 000

Tepliakova, Waskman in Clement, 1996

Rhizobiums:

optimum de croissance à un pH de 7 à 7,5

Nématodes / Collemboles :

Tous pH mais préfèrent pH acides

Vers de terre :

5,0 < pH < 7,5, idéal 6,0 < pH < 7,0

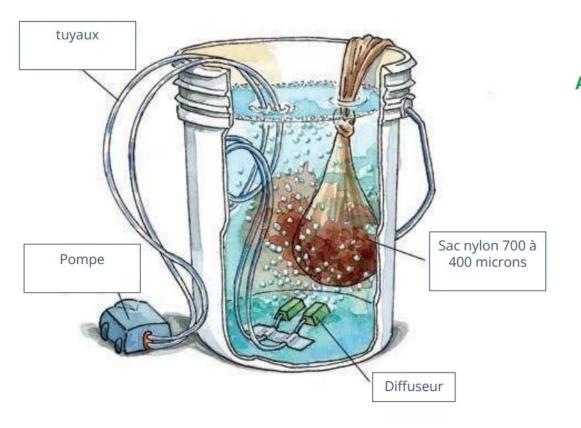
Bactéries:

5,0 < pH < 7,5, idéal 6,0 < pH < 7,0 Plutôt pH > 6,5

Champigons:

4,0 < pH < 9,0 ; Mais pas acidophiles

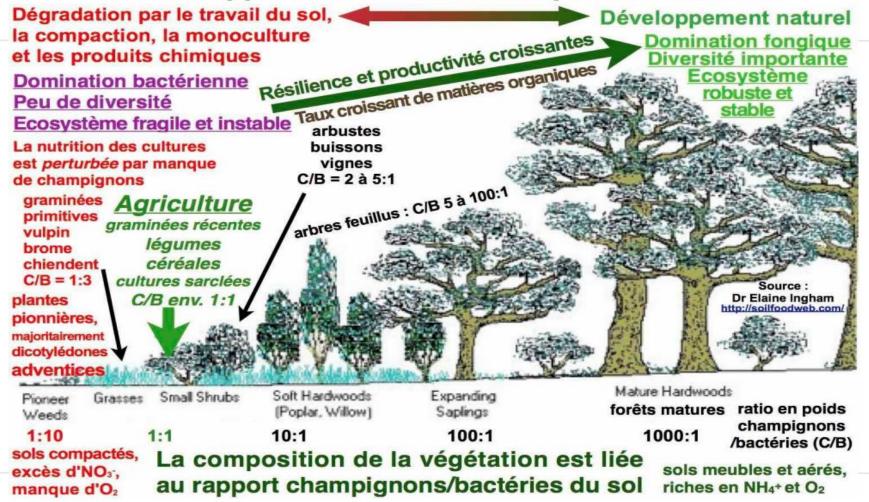
NOURRIR LA VIE DU SOL


Expression du pouvoir pathogène en fonction du pH		
Favorisée en milieu acide	Favorisée en milieu neutre ou alcalin	
Aphanomyces euteiches Fusarium oxysporum Plasmodiophora brassicae (hernie du chou) Pythium	Chalara elegans (pourriture noire des racines d'endives) Gaeumannomyces graminis var. tritici (piétin échaudage) Fusarium solani Phymatotrichum omnivorum (pourriture racine fruitiers) Streptomyces scabies (gale Pomme de Terre) Verticilium albo – atrum, Dahliae	

Pierre Davet, 1996. Vie microbienne du sol et production végétale

THÉS DE COMPOST OXYGÉNÉS (TCO / TCA)

THÉS DE COMPOST OXYGÉNÉS


Thé de compost oxygéné TCO

- Thé de compost oxygéné
- Un extrait de compost infusé dans l'eau
- La multiplication de micro-organismes
- Bactéries
- Champignons
- nématodes

Le développement successif des plantes et du sol

Thé de Compost **Usage** & Effets

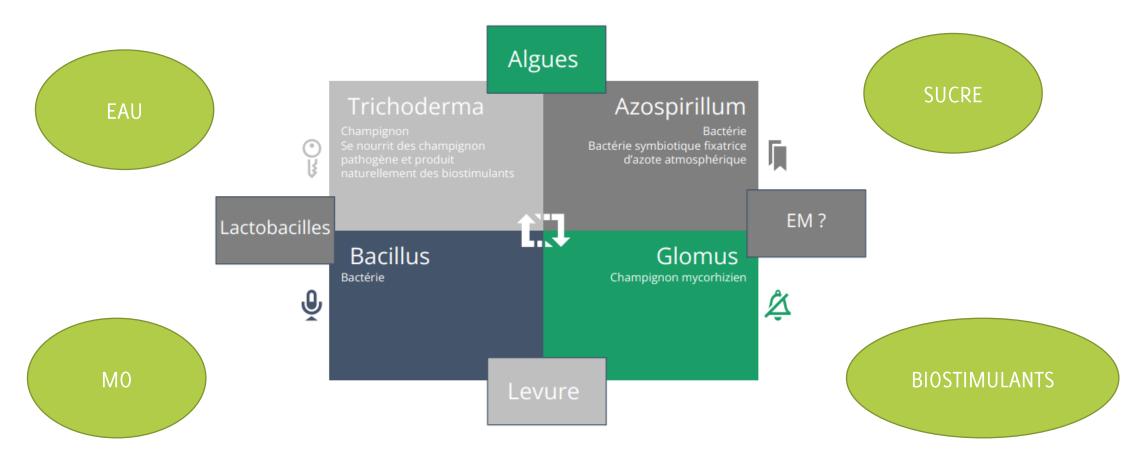
Enrobage

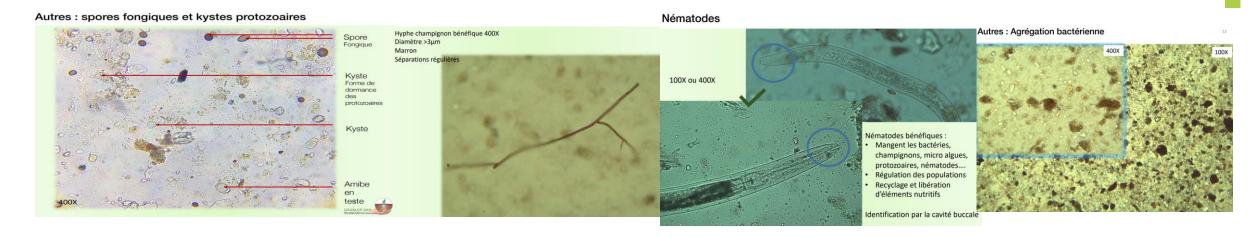
Avec un apport de microorganismes vivants, il sont immédiatement fonctionnel au semis, et l'on contrôle mieux la symbiose initiale

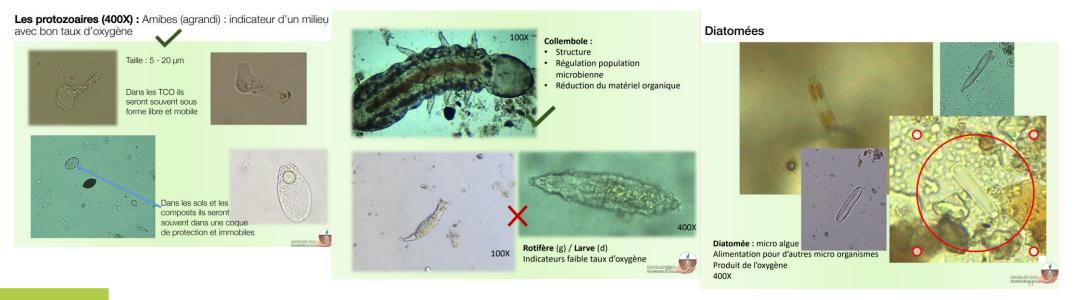
Croissance

Avec une biotope spécialisé l'assimilation des élément nutritif est amélioré.
Absorption dans l'air ou déblocage dans le sol

Protection


En foliaire un **biofilm** de microorganisme diversifié agit comme un écran protecteur à la surface de la plante.


Booster

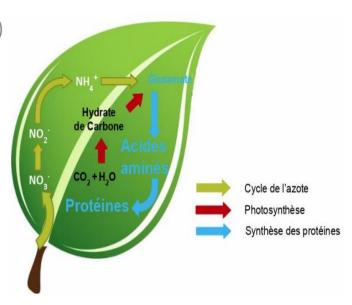


Les biostimulants et les éléments nutritifs sont rendu biodisponible par les micro organismes. Par ce biais on peut remettre la plante sur la case santé.

Micro Organismes Combinaisons

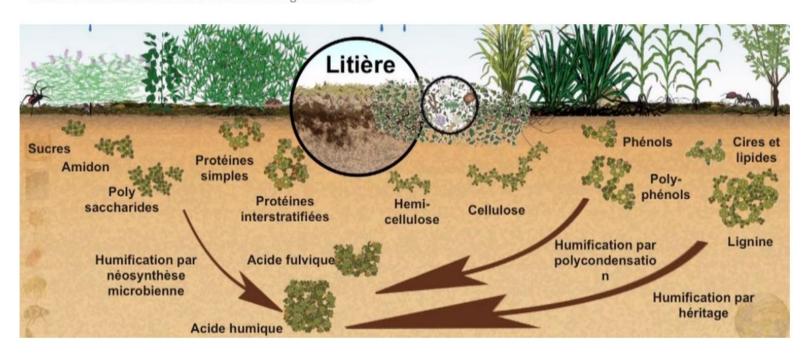
Les Acides **Aminés**

Améliore l'assimilation de l'azote


Azote la plus biodisponible

Procure plus d'énergie vs engrais minéraux:

la plante n'a pas besoin d'énergie (photosynthèse) pour formuler les acides aminés à partir de l'azote minérale


Plante plus résistante en cas de stress :

meilleur récupération après le gel meilleur résistance à la chaleur et à la sécheresse meilleur résistance au manque de lumière

Les Acides Humique et fulvique

Issu de la dégradation de la matière organique
Biostimulants racinaire / foliaire & conditionneur de sol / nourriture de choix pour les champignons
Améliore la disponibilité et la mobilité des nutriments au sein du sol, tout en améliorant la rétention d'eau.
Améliore la croissance racinaire, utile en enrobage de semence.

Compléments Croissance

- Luzerne (alfalfa): contient l'un des biostimulants les plus efficaces en croissance Triacontanol. Riche en azote et en protéines, elle contient également du magnésium, du phosphore, du potassium, des minéraux, oligo-éléments, vitamines, enzymes, ...
- Algues marines. (Kelp) ascophyllum nodosum Elle contient de nombreuses vitamines, minéraux et oligo-éléments.
 Attention elles possèdes également des propriétés, régulant l'activité bactérienne, qui peuvent pénaliser le bon développement de votre thé. A utiliser à petites doses dans le thé. procure à la plante une très grande résistance au gel
- Ortie : Riche en azote et oligo-éléments acides aminées , bactéries symbiotiques .
- Guano d'oiseaux marins : Riche en matière azotées, source de phosphate et de calcium très riche en biodiversité
- Consoude: activateur de vie biologique du sol (appliquer au début du primptemps)

Eau SANS CHLORE

Absolument **impératif**

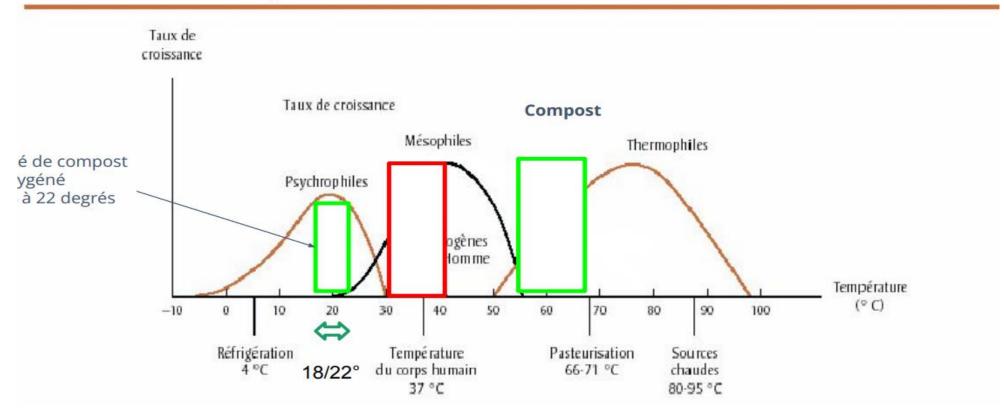
Pour toute les préparations l'eau doit être la plus qualitative possible, surtout sans chlore.

Pour déchlorer : Laisser reposer l'eau (12h) Aération et brassage actif (2 heures) Mixeur (2x 1 minute) Filtration osmose inverse immédiat

Mélasse **SANS ADDITIFS**

Absolument impératif

Pour toutes les préparations la mélasse doit être la plus qualitative possible, **sans soufre**, **cuivre** ou autres additifs.


Préférence pour la canne Sucre Bio :

Plus riche en silice, macro et micro nutriment. la mélasse de betterave doit être complétée si utilisée.

Hygiène et Nettoyage

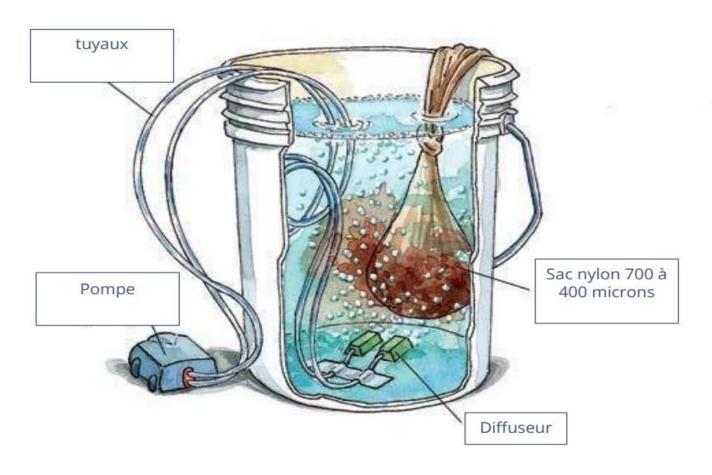
Figure 2. Courbes de croissance des microorganismes psychrophiles, mésophiles et thermophiles selon la température

Hygiène et Nettoyage

Tout est Multiplié

Tous les instruments doivent être soigneusement nettoyés.

Les biofilms peuvent adhérer définitivement sur la paroi et contaminer les thés suivants.


La qualité du compost (sans pathogène) est primordiale si on applique en foliaire.

Une aération supérieur à 15% oxygène à 20% Condition **aérobie impérative**.

Limiter au maximum l'anaérobie bulleur dans le sac d'infusion , charbon, agitation

Thé de compost oxygéné TCO

TCO Elaine Ingham

Tableau 1 : Ingrédients du thé de compost, pour 100 litres.

est and interview	Thé "fongique" Dominance champignon	Thé bactérie/ champignon	The "bacterien"
Eau de qualité – non chlorée ou chlore évaporé	100 litres	100 litres	100 litres
Compost bactérien			3-4 kg
Compost 1:1 bactérie / champignon	•	3-4 kg	
Compost "fongique"	4-5 kg		
Acides humiques	300 mL	250 mL	
Mélasse verte – sans soufre	250 mL	250 mL	250 mL
Algue broyée séchée (Algues de mer- Fucus, Laminaria)	125 g	125 g	125 g
Tourteau ou hydrolysat (protéines, acides aminés)	125 g	50 g	
	Hydrolysat de poisson ou crustacé, tourteau de soya, farine de plumes, gruau, pulpe de fruits	Hydrolysat de poisson ou crustacé, tourteau de soya, farine de plumes, gruau, pulpe de fruits	Émulsion de poisson
Autres extraits filtrés	50 mL		0 à 100 mL
	Yucca (saponines)		(yucca, macération d'ortie, vin de pissenlit, infusion de consoude)

Source - Elaine Ingham 2003 Compost Tea Brewing Manual 4th ed

TCO diversité (C/B équilibré) de Karel & JC

Pour 100 litres de thé

Dans le filet

2 à 3 kg Compost **Startrex** 1 à 2 kg **PK Compost tea** 1 kg lombricompost frais

Dans le liquide

1 à 5 gr **Bactrex** 0,1 Litre Mélasse ou 0,25 litre **Orgatrex** 0,1 Litre Acide humique et fulvique **Humitrex**

Infusion

18h à 24h thé équilibré Bactérie / Champignon

TCO Croissance rapide

Compost + Biotope croissance

Pour 1000 litre d'eau 10 à 25 kg Compost (lombricompost ou compost mûr) 10 à 50 gr Bactérie bacillus sp 500 à 2500 gr Guano 1200 gr Algue en poudre

1 Litre Mélasse

Pour un thé équilibré bactérie champignon

1 à 2 litres acides humique et fulvique

Infusion

12h thé bactérien (plante annuelle croissance rapide) 24h thé équilibré bactérie champignon

TCO Croissance +

Compost + Biotope Végétal

Pour 1000 litre d'eau 10 à 25 kg Compost 1 litre Mélasse 2500 gr Guano **Végétal**

2500 gr Ortie & prêle ou luzerne

Infusion

24h thé équilibré bactérie champignon

Options

selon les besoins de la culture ajouter après infusion, au remplissage du pulvérisateur

1l acides aminés 1l acides humique et fulvique 500 à 1000 gr sel epson

TCO ET CARBONE Pulvérisation

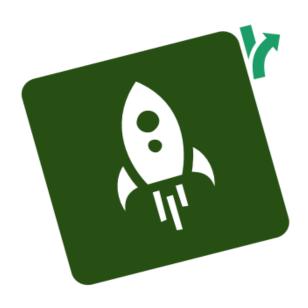
Facteur de réussite Multiples

Lieu de destruction des microorganismes :

- Impact sur la feuille et au sol
- Sortie de la Buse
- Pompe du pulvérisateur
- Pompe pour remplir le pulvérisateur

Facteur environnementaux de destruction

- ecart de température entre thé et l'extérieur
- rayon ultraviolet pendant l'application


Préférer l'application la nuit avec une température entre 10 et 20 degré.

Dans tous les cas de rayon direct du soleil, le thé de compost est **sensible au UV pendant l'application.**

Couverture optimale du feuillage + rosée = matin Entrée par les stomates = début de soirée 1,5 bars maxi

Traitez la nuit

Introduction

Plante + **Besoin**

De l'enrobage de semence à l'utilisation de pulvérisation de thé de compost, vous devez garder à l'esprit que vous devez coller au besoin de votre plantes.

Chacune a ses spécificités et des réactions (sensibilités) vis à vis des micro organismes.

Vous devez au préalable tester votre programme d'enrobage sur vos tests de semis vous devez obtenir une plantes plus vigoureuse en quelques jours.

Les programmes ont été testé sur blé orge maïs sorgho Tomates Pomme de terre Chanvre textile (plantes à gros besoin).

L'enrobage et les thé de compost ne vous exonère pas d'avoir une bonne réflexion agronomique générale

Résistance au Stress hydrique

Microorganismes

Azospirillum brasilense Bacillus sp Frankia

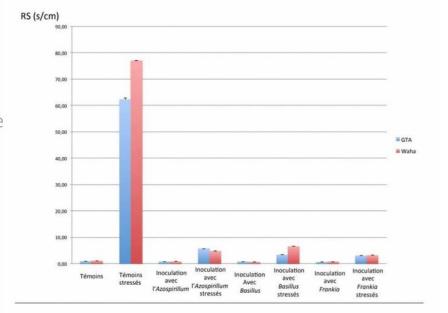
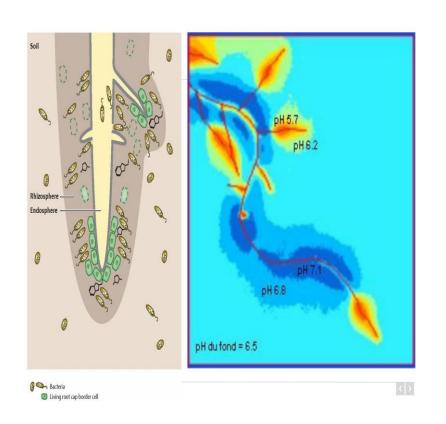
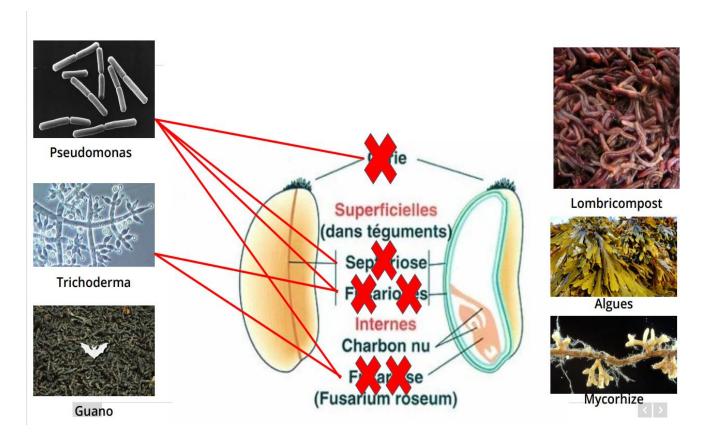





Figure 11: Variation de Résistance stomatique des plantes témoins et plantes inoculées (A.brasilense, Bacillus.sp et Frankia CcI3) de blé dur (GTA/DUR, WAHA) sous condition de stress hydrique.

Enrobage Simple pour 100 kg

Acides humique et fulvique

1 litre

Eau de Pluie

1 litre

Mélasse

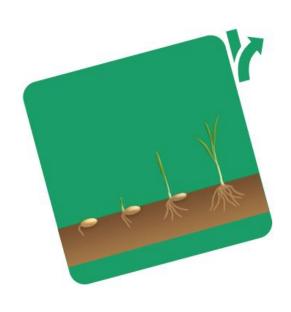
10cl

Algues Liquides

1 Litre

Thé de Compost

1 litre


Trichoderma + bacillus 50g à 500g

EMA 10cl

www.yourwebsitename.com

Enrobage Simple pour 100 kg

Acides humique et fulvique 1 litre

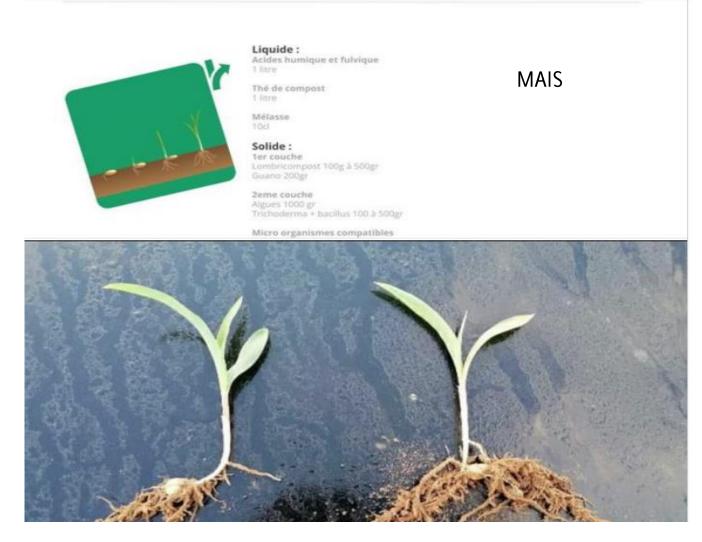
Eau de Pluie

1 litre

Mélasse 10cl

Compost

Lombricompost 100g à 500g Trichoderma 50g à 500g Guano 200g à 500gr Algues 200 gr Poudre roche 100gr Biochar 50gr Argile verte 100 gr



Enrobage JC1 Féverole / Pois pour 100 kg

Enrobage JC1 Féverole / Pois pour 100 kg

VISITE DES PARCELLES ET ÉTUDE DES FOSSES PÉDOLOGIQUES

FOSSE N°1

• Itinéraire technique

Soja en sec récolté 11/10/22 15 qtx

Déchaumeur à disque 25/10

Orge + fév Semé au combiné 31/10

TC0 14/02/23

TC0 25/03/2023

• Infos complémentaires

Orge	Féverole	
Himalaya	Fermière, petit PMG	
120 kg/ha	25 kg/ha	

Sol : argilo-calcaire avec bandes de graviers

Adventices: mourons blancs et véroniques qui ont disparu à la fin de leur cycle. L'orge est passée au-dessus

TC0: 150L/ha

FOSSE N°2

• Itinéraire technique

Maïs récolté 03/10/22 25qtx

Déchaumeur à disque 05/10

Cracker (Alpego) 07/10

Rotative 25/10

Grand épeautre
Semé au combiné 28/10

Jus de fumier TCO
25/03/2023

Infos complémentaires

Grand épeautre

Variété ancienne

120 kg/ha

Sol: argileux profond, marne en profondeur

Grand épeautre: céréale vigoureuse donc difficile à associer (seule en pur sur la ferme). Projet: association avec féverole

PROCHAINES RENCONTRES

DU GROUPE GIEE SOLS EN TRANSITION

DÉBUT SEPTEMBRE

Visite essais couverts estivaux

HIVER 2023-24

Plusieurs rencontres pour visiter les essais de couverts hivernaux

CONTACTS

ALEXIA GARRIDO

Animatrice en grandes cultures BIO ARIEGE GARONNE 06 34 08 21 57 alexia.garrido@bio-occitanie.org

• POUR ADHÉRER A BIO ARIÈGE-GARONNE:

http://www.bioariege.fr/article/adherer-a-bio-ariege-garonne

EMILIE SANS

Technicienne bio
CAPLA
06 30 25 96 00
bio@coop-capla.com

• JEAN-MARC DESTEFANIS

Technicien bio
CAPLA
06 16 67 85 39
bio@coop-capla.com

